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ABSTRACT

Asymptotic-induced methods are presented for the numerical solutionof hyperbolic con-

servationlaws with or without viscosity.The methods consistof multiple stages. The first

stage isto obtain a firstapproximation by using a first-ordermethod, such as the Godunov

scheme. Subsequent stages of the method involve solvinginternal-layerproblems identified

by using techniques derived via asymptotics. Finally,a residual correction increasesthe

accuracy of the scheme. The method is derived and justifiedwith singular perturbation

techniques.
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1 Introduction

The combination of asymptotic and numerical analyses provides improved accuracy for

multiple-scales problems 2. Many physical problems have multiple scales; a typical situa-

tion occurs when physics on the fastest scale induces narrow regions where the variation in

the solution is large. Such regions are called boundary layers or transition layers, depending

on whether they are near a boundary or inside the interior of the domain. Examples of

such situations are laminar flow of a slightly viscous fluid or combustion with high activa-

tion energy. Classical schemes applied to these types of situation generally fail to correctly

describe the behavior inside the layers. This difficulty is overcome by developing numerical

methods based on the asymptotic analysis of the multiple-scales problems. We demonstrate

how asymptotic analysis and numerical analysis can interact to achieve the goM of a highly

accurate solution method.

The numerical techniques developed in this paper are designed to solve two problems:

hyperbolic conservation problems with or without viscosity. Also, we treat three different

types of singularity arising in inviscid and viscous conservation laws, using domain decom-

position: specifically, we solve problems that have shocks, weak singularities, and interaction

of singularities. We use an asymptotic analysis to identify the appropriate scalings as well

as modified problems in the transition layers. The domain decomposition of our numerical

method is then based on the criterion given by the asymptotic analysis. The numerical algo-

rithms involve several stages to solve each modified problem in the layers. Finally, we treat

weak singularities with a residual correction. The residual correction also identifies incorrect

asymptotic preconditioning and controls the numerical accuracy of the solution.

A number of recent papers present new numerical methods that are induced by an asymp-

totic analysis. For example, basis functions motivated by asymptotics of boundary layers

are developed in [3]. Many of the basic ideas relating to asymptotic analysis and numericM

methods that use domain decomposition are found in [2]. These ideas were incorporated into

a parallel numerical method in [15]. Specific applications to problems involving conservation

laws have been developed in [1].

On the other hand, some recent papers used the singular perturbation approach to in-

vestigate the effect of viscosity on conservation laws. Sharp estimates can be found, for

example, in [10] and its references. The dynamics of internal layers are studied in [6]. Also,

uniform approximation based on the matching asymptotic technique are given in [8] and [7].

This paper is a further stage toward the synthesis of asymptotic analysis and numerical

methods applied to systems of viscous conservation laws (seen as a singular perturbation

problem). We begin with an asymptotic analysis of the problem in Section 2. This anal-

ysis is expanded and combined with numerical techniques in Section 3. We end with a

demonstration of the techniques on computational fluid dynamics problems in Section 4.

2 Asymptotic Analysis

In this section we present the problem and briefly review the asymptotic analysis that is used

in the method. The result is a uniform approximation based on the asymptotic technique of

2In this manuscript we shM1 solve all important problems of current interest, except possibly inflation.



matching [5].
Asymptotic analysisthat is strongly coupledwith the numericalanalysisis delayeduntil

later in the paper.

2.1 Setting of the Problem and Regular Expansion

Consider the Cauchy problem

ov _F(U) P(U)_
U(x,O) = Vim ) for x e ]1:[.

for (x,t) E f_

(1)

Here the solution U : fl --* IR '_ is a vector-valued function , the domain is fl = IRx]0,T[,

and e << 1 is a small parameter.

We assume that V is piecewise smooth. We also assume that F and P are smooth

functions of U. We suppose that P is a suitable viscosity matrix [4] for the shocks of the

following associated inviscid problem:

ou _F(U) 0 for (x,t) C_t

_-+ =

U(x,O) = V(x) for x e IR.

(2)

That is, a shock wave solution to (2) can be obtained as a limit of progressive wave solutions

of (1). Problem (1) is a parabolic-hyperbolic singular perturbation problem driven by (2).

One easily obtains the regular expansion

U_,_t', = U ° + eU 1 + e2U 2 +... (3)

that is a pr/or/valid outside the neighborhood of the singularities of the solution to (2). We

substitute U°,"t" in the differential equation of (1) and use identification in e to obtain that

U ° must bca solution of (2). Wc also find that U 1 must be a solution of the following linear

hyperbolic problem:

8U _

+ (DF(U°)U1)=

Ul(x,0)=0 for xelR,

for (x,t) •
(4)

where DF denotes the Jacobian matrix of F. In general, the equation for the term U _ with

coefficient e_ is the solution to the analogous differential equation

OUi

Ot 0 = RHS(UJ,j < i),

with a right-hand side that depends on the previous terms. The inviscid problem (2) has

many weak solutions; we shall uniquely define U ° as the analysis progresses.

It is most common to complete U °ut" with a ui, _'* for each singular region to obtain a

uniformly valid approximation to a viscous problem. However, we shall develop in detail only
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the asymptotic analysis that is required for our numerical methods. Thus we restrict our

asymptotic analysis to complete U°uter with U_ "r only when the singularity is a shock layer.

The solution is completed for weak singularities with the residual correction techniques of

Section 3.4. This completion also results in a uniformly valid approximation. Furthermore,

the approximation is not difficult to obtain numerically. It is easy to see that interaction of

singularities requires a stretching in both the space and time variables: this leads to some

parabolic layers. We shall use a numerical treatment of the interaction of singularities that

does not require a complete analysis of these parabolic layers.

2.2 Transition Layer That Corresponds to Shock Waves

We assume that solutions V ° of (2) are smooth except on piecewise regular curves Sk(t). It

is assumed for t E [to, 51] that the Sk are isolated from each other. Without loss of generality

we may drop the subscript k. S is assumed to be smooth for t E [50, 51]. In particular, we

assume no focusing of characteristics. To make this more precise, we suppose that there is

an interval of time [t0, tl] such that for each t e [to, tl] and for each S the following limits

exist:

U_°= lim U°(z,5), U°= lim V°(z,t),
=--,s-(t) =-,s+(O

Let us define the change of variable: _ = x - S'(t) t and r = t. We denote 0(_, r) =

U(x, t). We further assume that

OU o OU °

*--,o- 0_' , = lim_.-*0+ OT '

_Ui c3_U_
U_,,= lim _ V;i,.= lim _ for i,j>0,_-*o- O_,_ ' _--.0+ 0_ _ ' -

V_°, = O(1), V L = O(1).

The shock layer profile will not have rapid variation, so it is appropriate to scale and

translate only the spatial variable (and not the temporal variable). Such a transformation

is defined by

_z-S(t) and _=t, (5)

where we denote _7(_, r) = U(=,t). Under this transformation the differential equation of

problem (1) becomes

0010 ( ^ 00")+ e- -_ (F(f])- S(z)fl) = e-' _-_':3 P(U)-_--( . (6)

This suggests an inner expansion of the form

tr: = + + +..., (7)

where all of the terms 0 _ are functions of _ and r. Using this expansion in (6) and imposing

the matching relations [5, 8] with the outer expansion rrout¢_..= , we derive the set of ODE



problemsfor the 0 i. The equation for the first term is

{ + (F(oo>_s,(,)oo)=o,O°-, V? _ _---,-oo
O°.--,V? as _..-, +oo

and for the second term we have

(8)

I10'- (tro_A+ vt,,),o -_ 0 as _ -_ -oo (g)

II0_- (traA + u°,,)llo-_ 0 as _ -_ +oo,

where llUllo- ma=i=,..,(luil) for u = (ui)i=1..,. More generally, we obtain

o.(.(oo).o,)+ o, R.s,(o ,s<,),
aS _ -...+ --00

as ( --+ +oo

I10° - E_=o'--LU'-J,'-J,,t , 11o_0

1[0°- E_=o _"-u-rr_-i:i-Jllo-' o

(10)

where the right-hand side is a nonlinear function depending on the Oi for j < i. Identification

of the coefficients of the appropriate power of e in the differential equation of problem (6)

determines RHSi.

The temporal variable r can be considered as a parameter in the transition layer because

the above problems require the solution of only ODEs. Also, the problems for Oi are linear

for i > 0. Being able to treat r as a parameter is not surprising, since U°,t = O(1) and

U°,, = 0(i).

Next we discuss the existence of _ro and the uniqueness of U0 as well as the uniqueness

of the curve S. Using a matching relation on the first spatial derivates on the terms in the

expansion U_=er, one looks for 0 ° such that

O0°
---+0 as _--+ +oo.
o_

We integrate (8) from -oo to _ to obtain

(11)P(O°)_-_ = H(U °) - H(U_),

where H(U) = F(U) - S'(t)U. Thus, the existence of a solution to (8) implies the Rankine

and Hugoniot condition (RH)

H(U?) = H(U°).

This means that U_° and U° are critical points of the dynamical system (11).

In addition to the RH condition, we must be able to construct the layer; thus, we assume
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There exists a unique trajectory for the
H1. dynamical system(11) from U_ to U °.

It is interesting to compare H1 with the classical geometric entropy condition (GEC). For

scalar conservation laws, H1 is equivalent to the GEC [11] [14]; however, this is not in general

true. A number of very interesting studies have considered which conditions one can expect

that the GEC implies H1. In particular, the GEC implies H1 when P is the identity and

the problem consists of a 2 x 2 system with the assumption of genuine nonlinearity [4, 12].

The existence of a viscous profile (i.e., H1) is not of the same nature as the GEC. However,

we restrict our problems to cases where the RH condition and H1 are enough to uniquely

define U ° and S (and consequently U°uter).

Now we have determined/)0 up to a translation in the spatial variable _. In Section 2.2

this translation will be imposed as a solvability condition on the solutions to problem (9).

2.3 Construction of the Inner Expansion in the Shock Layer

Here we briefly outline the construction of the solution in the shock layer. This formal theory

for systems of conservation laws is a generalization of the construction in the case of scalar

conservation laws [8]. For more details of this generalization, see [9].

Let us concentrate on the construction of the solution _1 of problem (9). The procedure

is first to obtain two functions 5r_(_,t) and U_(_,t) as solutions to related problems, then

combine them such that the resulting function is a smooth solution of (9). The function _r_

satisfies the equation from problem (9) with the left boundary condition

0 ' - (Uo_,_+ u°,,)-* 0 as _ -, -oo,

whereas U_ satisfies the equation from problem (9) with the right boundary condition

1 1 U 0- (v_,,_+ 1,,)--*0 as _ -_ +_.

We use the solutions to these problems that are constructed using an element 0U°/0_, of

the kernel of (9). That is, we construct _i as the function

{ O'_((,t) + B,(t)x-_ ° for _ __ 0#_((,t) = U_(_,t) + B,(t)x-_e ° for _ _> O,

where U x V denotes the vector (uiv_)_=l..,_. B_ and By are some smooth vector functions

from _ into _ that satisfy the continuity condition

^0

ov o _) Cr_.(o,t)+ B.(t) x aO°Ot).Cr_(O,t)+ B,(t) × -_-( , = --_-(( ,

Notice that for a fixed value of _, this relation determines the vector functions up to a single
constant.
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Onecan prove [9] that 01 is a smooth function iff 0 ° satisfies the relation

where [.] denotes the jump across the shock. This is simply an area relation that determines

the shift in _ for 0 °. Let us assume for simplicity that U and its space derivatives vanish at

infinity. One can show that this relation is a consequence of the conservation relation

satisfied by solutions to (1) and (2). This relation is also be satisfied by our uniform approx-

imation of the solution to (1), where

U_ = (1 - H(_,))U°: ter + H(_,,)(0 ° + eU 1) + O(e2).

Here _v = (z - S(t))/e" is the intermediate variable and H is a smooth cutoff function

o if lyl> 2
H(y)

1 if lyl<x.

More precisely, we have

ova, =oo Yid--

We currently have defined 01 up to a kernel function of (9). Since we use only the

first term 0 ° in the current implementation of this method, we do not discuss how to

determine this constant here. This construction can be pursued at any order. For example,

the solvability condition for problem (10) with i = 2 will select the only admissible _1

solution of problem (9) [8].

3 Asymptotic-Induced Numerical Scheme

Now we consider the numerical treatment of problems (1) and (2) by using the analysis in

the previous sections.

3.1 Localization of the Singularities

Let {z_}_ ..... -1,0,1 .... be the spatial discretization of step size Az, and let {tk}k=l .... be the

temporal discretization of step size At. For convenience we restrict the discussion on local-

ization of singularities to scalar conservation laws. The scalar terms are distinguished from

the system by using the notation u and f as the solution and flux function in place of U and

F, respectively. We suppose that u is known at time tk. Starting from u(., tk), we apply a



Table 1: Asymptotic Order of Residual

Type of Zone Order of Residual

Regular zone

Shock layer

Weak singularity

u, + f(u).

X

Local Coordinates

T

(=-s(t))/,

Shock interaction

with other singularities

Discontinuous with

f locally linear

Formation of shock

0(i)

(=-
(=-&-

discretization that gives an approximation fiK at the discrete spatial points {=i} at time tK,

where K > k. Given this approximation, we discuss the problem of localization of different

types of singularities of u at time tK.

Localizing the singularities will use the residual obtained from the left-hand side of the

PDE in (1). To this end, we recall in Table 1 some results of the asymptotic analysis of the

Cauchy problem (1); see [8] and its references. Here So and 5'1 are the constants from the

local linearization S(t) = So + Sit + O((t - _o)2) in the neighborhood of the singularity.

The localization is presented for the case when ,2g is obtained by using the first-order

Godunov scheme; however, this analysis requires only minor modification for several first-

order discretizations of scalar conservation laws, provided the discretizations are conservative.

The solution obtained via the Godunov scheme is an approximation to within O(A= 2) of the

following Cauchy problem:

8u

+  s(u) = (a(f,u,,..,,\=)?.)

u(z, tk) given.

(12)

We fix the ratio At/Az so that Am may be treated as the parameter e in the table.

In the more general case of a system with some first-order discretizat-_on, we obtain Wo

as the numerical approximation of the solution to the hyperbolic problem. Let us assume

that the function Wa is the solution to

SF(u)
.-_-+ =

U(z,tk) given,

where GH is for the numerical viscosity of the specific hyperbolic scheme with GH = 0(1).

The detection for the numerical method is based on obtaining an approximation to the

residual cgU/cgt + OF(U)/O=.

The residual is of magnitude O(Az -x) in either a shock layer or in a zone where a shock

interacts with some other singularities. In addition, an approximation of the viscous term



_--_0(.,_K) localizessome of the singularities. For example, this viscous term will be of order

O(Az -1) in a shock layer or in a zone of interaction.

Numerically it may be difficult to determine when the residual (or viscosity) is of order

Am -1. This difficulty may usually be overcome by computing the numerical solution on

two grids with different spatial spacings Azl and Am2. Let R1 and R2 be approximations

to the residuals of the solutions on these meshes. When the ratio R1/R2 of the residuals is

within some tolerance of Ax2/Azl, then we treat the region as being inside a shock (or shock

layer). It should be mentioned that asymptotic analysis and numerical experiments show

under general conditions that strong singularities are not well localized by any approximation

of the gradient of the solution.

Shocks (and interactions with shocks) are easily detected and are treated in the next

section. In Section 3.4, we shall show how some weak singularities that are much more

difficult to localize can be absorbed in a residual correction process.

3.2 Numerical Treatment of Shocks

Let us first recall the numerical treatment of a simple shock for a scalar conservation law [1].

Let _0 = [a, b] be the zone that includes the shock (or the shock layer). First we construct

an approximation @ to the solution of (2); next, to compute an approximation to the shock

location S, we treat the solution near the shock (or inside the shock layer).

The region _o is chosen so that _ is an a priori valid approximation to u except possibly

for some portion of _0; thus, ffJ = fi outside rio. The approximation @ is constructed inside

_t0 with an extrapolation of _. This extrapolation is based on values of _t outside _0. We

construct @ as the connection of the extrapolated values. For t = tK fixed, we impose the

area relation

_'_K(@l'Yt -- _t)dx + /bK(_t-- _r@ht)d:r = O

on the discrete problem. This is presented visually in Fig. 1, where we use second-order

extrapolation and have placed ,q so that the area covered by the dark grey is equal to the

area covered by the light grey. As we discuss below, the left and right values of @ are used

for the boundary conditions for the first-order approximation of the solution with a viscous

profile.

Notice that the accuracy of the approximation @ as a solution to the inviscid problem

is limited only by the particular numerical techniques. Specifically, the accuracy is limited

by the accuracy to which _t is computed outside r0 and by the order of accuracy of the

extrapolation. There is no limitation imposed by the asymptotic analysis on this aspect of
the method.

The treatment of the solution in a neighborhood of the shock (or inside the shock layer)

depends on whether the goal is the solution of the viscous problem (1) or the inviscid problem

(2). If the solution to inviscid problem is the goal, then we wish to minimize the viscosity.

Viscous problems require the computation of the profile of the shock. The asymptotic

analysis of the shock layer for a system of conservation laws is similar to the case of a

scalar conservation law (cf. Section 2).

For the numeric computations, the primary difference between the treatment for a scalar

conservation law and a system is that we must verify that certain conditions are satisfied by



Figure 1: Approximation of shock location

the system. Specifically, we a post.eriori (during the numerical computations) verify that

• YV"° and l_z° are on a R.ankine-Hugoniot set up to a tolerance,

• there is a trajectory from l_r° to l_t °, and

• _ = 0(1).8r

The first assumption is satisfied automatically by solutions to scalar conservation laws. Now
we shaU describe in more detail the numerical treatment of the shock layer depending on

whether one solves an inviscid or a viscous problem.

3.2.1 Minimum Viscosity Method

Suppose that for a particular tk, the shock location S is in [m_, m_±l[, where [z_, m_+l[C fl0. In

the most general case, S will not be a grid point, and we modify W to maintain conservation.

This step results in modifying either the value of l_v'_ or the value of TTV'_+_(see [1] for details).

The modification introduces the minimum of viscosity needed to use the Godunov method

throughout the domain. This modification of l#f_ or l_r_+l is the final stage of the shock layer

treatment when the goal is the solution to the inviscid problem.

3.2.2 Viscous Problems

To solve problem (1), we implement the inner layer computation as in Section 2.2. The

matching relations used to obtain a uniform approximation are based on the numerical

approximation of the outer expansion. Thus, we solve (8) except that gro and l_/z° are used

in place of U° and Ul°, respectively.



To obtain the higher-ordercorrections_r_for i > 0, we would solve the problems (9) and

(10) with modified boundary conditions; however, an easy approximation can be obtained

by computing a poor approximation/.)_ to 1.)1 such that

5'1=/ _- Ut° for x<x_

[ W v ° for _>x_.

The numerical treatment of this problem involves using an ODE solver to obtain the

solution to the system of ODEs (8). Notice that except when the details of the viscous

profiles are desired, we need only obtain the values of the inner expansion at the coarse grid

points on which we know l_z. Even when a higher-order numerical method is used, there are

a large number of steps in the integration of the ODE system for the inner region. The cost

of this integration may be reduced by using an explicit formula of approximation given by

the asymptotic analysis in the neighborhood of the critical points (see [1]).

3.3 Interaction of Singularities

In regions where solutions to problem (1) contain shocks that interact with other singularities,

we use a brute-force approach. The local scaling in both the spatial and the temporal
variables is

x -So t -to

Under this transformation the PDE that governs the solution becomes

+ F(U) = _ (13)

where 0(_, r) = U(x, t). This is the equation that is solved in the regions with interactions.

There is no expansion of the solution used here. The transformation a priori resolves all of

the physics. This situation is reflected by all of the terms in (13) being order unity.

The initial condition for this problem is derived by imposing C O continuity. This was

sufficient for the problems considered in this paper. However, the computation of the residual

is a check of the numerical accuracy of the composite scheme. A residual correction similar

to the one in the next section could be applied to improve the result. Interface boundary

conditions is a topic of further study.

3.4 Residual Correction

Second-order accuracy in both space and time is achieved through a first-order numerical

approximation followed by a residual correction. This accuracy is obtained in regions where

the regular expansion (3) is valid. We also discuss the residual correction in the presence

of weak singularities, where the accuracy is increased (but not as much as for the smooth

regions). This discussion begins with the asymptotic analysis, is followed by the choice of

the particular discretization, and ends with the treatment of weak singularities.
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3.4.1 Asymptotic Analysis

The asymptotic analysis is based on the regular expansion presented in Section 2.1. Thus,

this analysis is restricted to regions where the solution is smooth and the regular expansion

is valid. For convenience, our analysis assumes e and A_ are both O(Az). The dependency

of e on Ax is related to the order of the regular expansion and the hyperbolic scheme used.

The Godunov method applied to (2) gives us WG as a first approximation to the solution

to the parabolic problem (1); thus U = WG ÷ O(AL Ax). A single correction Wc will be

computed so that

U = Wa ÷ hWc + h2W2 ÷ O(ha), (14)

where h is a small parameter of magnitude O(At) = O(Ax). The equation for W_ is deter-

mined with an analysis similar to that of the regular expansion.

The viscous terms now arise from both the viscosity in (1) and from the numerical error

in Wo, resulting in the linear problem

{ °o-_ ÷ _(DF(U)W,.) = R(WG) (15)wo( ,o)=o

for W_. Here,

hR(Wa) = v-_'-_x - _, cgt + F(WG) , (16)

where v = e or v = 0, depending on whether we are solving the viscous problem or the

inviscid problem. Notice that the terms of higher order would be included in the next term

of the regular expansion of U. The right-hand side in the equation of (16) is the residual

from using Wa as an approximation to the solution of (1). To obtain a second-order method,

we start with the first-order approximation WG, then compute the right-hand side of (16) to

second-order accuracy, and finish with a first-order scheme for (15).

The asymptotic techniques are similar in the more general case when e is not of size

O(Ax), and/or when a different order method is used to compute WG. Consider the case

when the numerical method is O(Ax p, Atq). In this case we choose the parameter h in the

expansion (14) to have magnitude equal to the largest of Am p, Atq, and v. The problems

for the terms in the regular expansion are obtained by identification in h after substitution

of the expansion into

"_OU+ F(U) = v-_xO P(U)..-_x ÷ Am'PI(U) + AtqP2(U),

where v = 0 or e, and P1 and P2 are terms of O(1). We do not require specific forms for P1 and

P2 for the numerical method since we may use a residual in place of AzPPI(U) + AtqP2(U).

3.4.2 Discretization of Correction

Here, we choose discretizations for the numerical approximation of the residual and the

correction scheme. Notice that these discretizations as well as the choice of the Godunov

method for the first approximation are only examples of possible treatments.

11



Centered differences are used throughout this section; hence, the resulting finite-difference
scheme will be a conservative discretization.

Residual. Here we use the discretization based on centered differences and averaging.
6 Txrk+l/2The temporal derivative is approximated by OWG(z_, _.+1/2)/0_ _ t,, c,_ , where we use

the notation 6 to be the centered difference operator

2A_7

The formula for the complete residual is

R. +1/21 1-- i. ,,,,:;,.,

/] k+l k+l+6o(P;sow ,,)]},
Here we use the notation F t = F(Wku,,) and the average P3x/2 = (P(W_,,) + P(WkG,i+x))/2.

Taylor series analysis can be used to verify that this is an O(Ax 2, At 2) approximation to the

residual at the point (x, t) = (xi, tk+l/2).

Correction Scheme. The implicit scheme based on a centered spatial derivative and a

centered temporal derivative is used for the discretization of Wc to obtain

6tTz/k+Zl2 (DF(TX/k+z _ Wk+Z) 1 Rk+l/2 (18),,c,_ +65=_ _,,c,_ J" o,, j=_--_ •

This is a first-order accurate method.

The accuracy of the discretization for the residual is balanced with the accuracy of the dis-

cretization for the correction term. We compute Wc to first order. The residual is computed

to second order; however, it is scaled by 1/h for the computation of the correction. This

results in a first-order approximation to the source term for the correction. The correction

discretization is first order; hence the overall method is second order.

3.4.3 Weak Singularities

A modification of the above analysis can be used to develop the residual correction in the

presence of weak singularities because the residual is still small in the neighborhood of a

weak singularity (cf. Table 1). The numerical algorithm is the same for this case; however,

the analysis (and resulting accuracy) are different. In place of (14) we have the regular

asymptotic expansion

u = wa+ v¢_ +...,

where Wo is the approximation of U obtained from the numerical method. The function

Wc is an approximation to the solution of

0-'-'_+ F ( U ) = u-_x

where u -- e or v - O. However, Wc may be treated as the exact solution of the modified

equation

OWa 00---7 + F(Wc) = h RHS, (19)

12



where h = o(1) is defined such that RHS = O,(1) is true a priori. So we rescaleI_i as:

l_t = hi're. As in Section 8.4.1, we obtain the equation for l/_rc as

0t-- + O (DF(Wo) . l_) o ( owo)= -RHS + x .

This is the equation for the correction term in the presence of weak singularities.

The numerical discretizations used for the case of the weak singularity can be the same as

those presented in the last section. For example, when the singularity is of order h = O(v/'_),

then the method with the name discretizations will have accuracy O(h 2) = O(e). Both forms

of the analysis in this section are valid with the numerical discretizations of the previous

two sections. The numerical method after the residual correction will be more accurate

than using the first approximation Wo alone. In addition, it is feasible to use a higher-order

method for the discretizations of the residual and a higher-order expansion for the correction

in regions of weak singularities.

3.5 Numerical Algorithm

The numerical and asymptotic analysis are combined and summarized in Algorithm 1 below.

The outer region is discretized by using the coarsest grid. Numerical values of Wc and We

are determined at coarse grid points. Wc is computed over the whole grid; however, the

coarse grid values located inside refined regions are used only in the conservation relation.

The refined grid values are injected into these coarse grid values at the end of the time step.

Linear interpolation is used to obtain values of the coarse grid solution between points when

necessary.

The numerical results presented here involve only a two-level refinement. This is because

the current implementation is designed for problems in which shocks (or shock layers) and

their interactions are the only strong singularities. We recall that weak singularities are

treated by the residual correction scheme.

The numerical solution in the shock layer is computed in the transformed coordinates

(5) when the shock profile is not rapidly varying. When interactions exist, the coordinates

use the same _ with the temporal scaling r = t/e. Although A_ is the same magnitude as

Ax, local spatial scaling is used. This means that a region of size Ax in the coarse grid

corresponds to many points in the e-grid. For this reason, we refer to the _-grid as the

refined grid.

The method is adaptive. The refined grid is allowed to change shape and location as the

solution evolves. The refined region contains an overlap region where both the inner and
outer solutions are valid.

4 Experiments

In this section we demonstrate the techniques developed within this paper. The experiment in

Section 4.1 demonstrates the residual correction. The experiments in Section 4.2 demonstrate

the method on the isentropic gas dynamic equations.

13



For k = 1, ....

I. March from _k to tk+t on two coarse meshes with spatial discretizations Am1
AX 2.

II. Detection.

A. On each coarse mesh compute the residual used in Table 1. (Alternatively,

compute the viscosity.)

B. Mark regions that should be refined.

III. Compute Wo with the residuals of Step II.A. except in marked regions,

A. Modify the shape of the refined region.

IV. March the marked regions from tk to _k+l according to the type of singularity.

A. For a simple shock of Section 2.3, compute the solution to the ODEs as
outlined in that section.

B. For an interaction of singularities of Section 3.3:

1. Form the initial condition in newly refined regions.

2. Determine boundary conditions from linear interpolation.

3. March inner solution A_/(eAr) time steps.

V. Inject the values from the internal layer to obtain the composite uniform approx-
imation.

ALGORITHM 1 Numerical algorithm

14



4.1 Solving Burgers' Equation

The residual correction technique is demonstrated by solving the inviscid Burgers' equation

Ou Ou
0--7+ _ = 0

on the domain [-0.2, 1] with a wedge initial condition. The first approximation is obtained

with a first-order Godunov method using discretization parameters Am = .025 and At =

.0125. The solution at time t = .5 is presented in Fig. 2. The increase in accuracy of

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-0.2 0 0.2 0.4 06= 0:s

x

Figure 2: Exact solution to Burgers' equation

the residual correction over using just the Godunov is shown in Figs. 3-4. The minimum

viscosity method is used for the numerical solution in a neighborhood of the shock. A cutoff

function is used for the residual correction. This causes the correction to be applied only

outside a neighborhood of the shock. The mass that might be lost or gained in this procedure

is included in the computations for the minimum viscosity method. The large jump at the

shock is a reflection of the error between the L2 projection of the numerical solution with

the exact solution.

Solving the Isentropic Gas Dynamic Equations4.2

In this section the method is demonstrated on the system

Ou Ov
=0

Ot Ox

Here u is the inverse of the density and v is the velocity. These equations are obtained

from the conservation of mass and momentum in Lagrangian coordinates assuming that u

15
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Figure 3: Error in whole domain with (dashed) and without (solid) residual cor-
rection
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Figure 4: Error in corner-layer region with (dashed) and without (solid) residual
correction
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is equal to the pressure raised to the -1/"/th power (the perfect gas law) with _, = 2.2. The

numerical solution in the outer region is computed with a first-order Godunov method with

CFL number At/Az = .2. The discretization on the scaled coordinates inside the shock layer

is based on _._ = .1. We use a third-order Runge Kutta method to compute the viscous

profile for a shock layer. To compute a parabolic layer, we use an explicit first-order ENO

scheme (similar to the Godunov scheme) with the CFL condition Ar/A_ < .2 and stability

condition At/A( 2 < .25. These values are within the limits imposed for the stability of the
finite difference method.

4.2.1 Simple Shock

The first experiment is a simple shock.

various methods. The initial condition is

where

In Fig. 5 we show the computed solution using

j'uL, for • < 0
U(X, 0) (20)

UR, for x >_ 0

0) = / vL, for < 0 (21)
Vn, forz >_ 0[

UR = 2.50, UL = .800, VR = .600,

and Vr_=VRq-I-(U _ Uz)(UR -Ur,)

The value for VL is chosen using the Rankine-Hugoniot condition

vR llU - llUZ
uR - VR-- VL

The computations are run with Az = .02. The Godunov and minimum viscosity methods

approximate the solution to the hyperbolic problem, whereas the ODE layer (solving problem

(8) inside the shock layer) and the parabolic-layer methods are used to compute the numerical

approximation to the viscous problem with e = .01.

The minimum viscosity method introduces significantly less viscosity than the Godunov

method. As expected, the parabolic-layer and the ODE-layer methods produce numerical

solutions that are very close to each other.

4.2.2 Shock-Rarefaction Interaction

The method was also used to solve a Riemann problem with a right-traveling shock and

a left-propagating rarefaction. Thus, for the small time, we must solve an initial layer

with a shock-rarefaction interaction. We can compute the exact solution of the inviscid

problem. First, an analytic self-similar solution (a rarefaction emanating from the origin) to

the inviscid isentropic gas dynamic equations is given by

u(z,t) = _l/(_+l) (_) -2/(_+1) (22)
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//

.....15 0 2 0.25 0.3 0.35 0.4 0.45 0 5 0.55

Plot of U showing various methods, t=.4

Figure 5: Numerical solutions to the isentropic system, t = .4

271/(7+ 1)

7 - 1 + const. (23)

An initial condition with a shock and rarefaction emanating from the origin is constructed

by connecting left values (UL, V,.) to middle values (Uo, Vo) with a rarefaction. The middle

vMues are connected to the right values (U,, V,) with a shock. In our experiment the initial

condition is given by (20),(21) where

UL= 1.4709, UR= 2.5000, VL= 1.0388, VR= 0.8050.

The middle value of the solution between the shock and rarefaction is (Uo, Vo) = (1.973,

1.356). We expect the viscous perturbation to have little or no effect on the speed at which

shocks and rarefactions travel; thus, we shall compare the viscous solutions to the exact

solution of the inviscid problem given above.

In Fig. 6 the exact solution to the inviscid problem is compared with the computed

solution, where A:_ = .02 and _ = .01. This plot shows that the shock speed and rarefaction

propagation are nearly the same for both solutions. Greater detail is shown for the shock

layer in Fig. 7. Here we use 6, -- 2e. This plot demonstrates that the method has the correct

shock speed and that the solutions are converging to the inviscid solution as c $ 0. Detail of

the rarefaction for the same runs is shown in Fig. 8. Here the offset to the location of the

rarefaction is Am/2 and can be attributed to the initial condition for the parabolic layer.

This is a domain decomposition method. The internal-layer domain is detected by com-

paring the second derivate to tolerance of constE_ The jump in interna11]ayer subdomain

boundary as depicted in Fig. 9 is caused by the steady smoothing of the rarefaction until

it is no longer detected by the residual or second derivative test. Also for t _> 0.2 a simple

shock is detected and can be solved by the ODE layer method.
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